Introduction O	LangPro 00000000	NLI datasets	Learning phase	Evaluation	Conclusion

Natural Language Reasoning with a Natural Theorem Prover Day 4: Natural Language Theorem Proving

Lasha Abzianidze

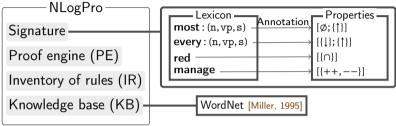
33rd ESSLLI in Gaillimh, Éire 8-12 August 2022

Introduction •	LangPro 00000000	NLI datasets 00000	Learning phase	Evaluation	Conclusion
Where are w	e now				

What we have done so far:

- Introduce Natural Tableau: a tableau system for natural logic, with more natural rules, with LLFs types with syntactic and semantci types
- Obtaining LLFs from CCG derivations of CCG parsers:simplifying, fixing and type-raising
- Rules that tackle erroneous PP-attachments (optional if the performance needs it)

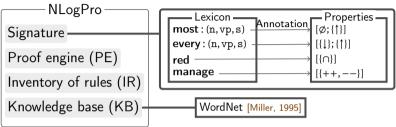
イロト イボト イヨト イヨト


Introduction •	LangPro 00000000	NLI datasets 00000	Learning phase	Evaluation	Conclusion
Where are we	e now				

What we have done so far:

- Introduce Natural Tableau: a tableau system for natural logic, with more natural rules, with LLFs types with syntactic and semantci types
- Obtaining LLFs from CCG derivations of CCG parsers:simplifying, fixing and type-raising
- Rules that tackle erroneous PP-attachments (optional if the performance needs it) What is today's plan:
 - Describe a Natural Tableau-based theorem prover for natural language
 - Describing the SICK and FraCaS NLI datasets
 - Evaluation on FraCaS (on SICK will be tomorrow)
 - Running the prover on google colab

イロト イボト イヨト イヨト



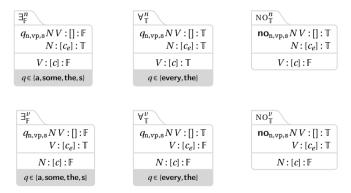
-

(a) < (a) < (b) < (b)

KB uses 4 relations from WordNet 3.0 (online version):

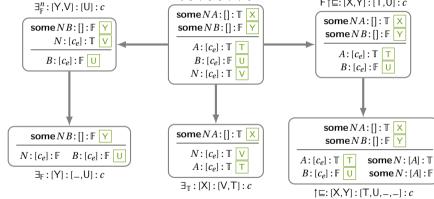
- derivation
- similarity
- hyponymy/hypernymy
- antonymy
- A No word sense disambiguation system is used.

Introduction O	LangPro o●oooooo	NLI datasets	Learning phase	Evaluation	Conclusion
Two data :	structures				


The proof engine builds both a tree and a list structures:

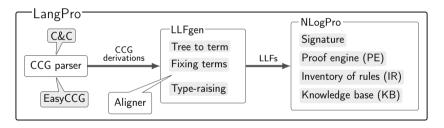
3

Introduction O	LangPro ००●०००००	NLI datasets 00000	Learning phase	Evaluation	Conclusion
Some deriv	vable rules				


Derivable rules are shortcuts for several rule applications.

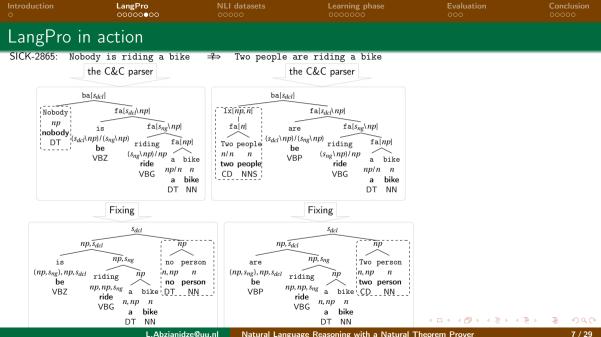
3

イロト イポト イヨト イヨト


 $\exists_{\mathbb{F}}^{n}: [\mathsf{Y},\mathsf{V}]: [\mathsf{U}]: c \Rightarrow \exists_{\mathbb{F}}: [\mathsf{Y}]: [-,\mathsf{U}]: c$

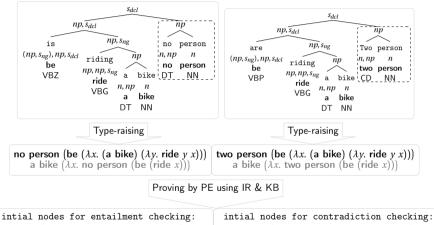
-

(a) < (a) < (b) < (b)



Chaining a CCG parser, the LLF generator and NLogPro results in a theorem prover for natural language.

Online demo: http://naturallogic.pro/LangPro GitHub repo: https://github.com/kovvalsky/LangPro


(a) < (a) < (b) < (b)

Natural Language Reasoning with a Natural Theorem Prover

7 / 29



no person (be $(\lambda x. (a \text{ bike}) (\lambda y. \text{ ride } y x))): []: \mathbb{T}$ two person (be $(\lambda x. (a \text{ bike}) (\lambda y. \text{ ride } y x))): []: \mathbb{T}$ two person (be $(\lambda x. (a \text{ bike}) (\lambda y. \text{ ride } y x))): []: \mathbb{T}$

э

A B A B A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A

Introduction O	LangPro 00000000	NLI datasets ●0000	Learning phase	Evaluation 000	Conclusion
The SICK	dataset				

SICK [Marelli et al., 2014b] contains Sentences Involving Compositional Knowledge:

- 10K Text-Hypothesis pairs generated semi-automatically and annotated by humans with three labels: E, C, & N.
- Contains no encyclopedic knowledge, no named entities, relatively small vocabulary, less multiword expressions and no lengthy sentences (≈ 9 words per sentence).
- Contradictions (86%) rely too much on negative words and antonyms [Lai and Hockenmaier, 2014].
- A benchmark for the SemEval-14 RTE task [Marelli et al., 2014a]: Trial (5%), Train (45%), and test (50%).
- 84% of crowd workers' labels match the majority, i.e, gold labels.

-

イロト イポト イヨト イヨト

	LangPro 00000000	NLI datasets ○●○○○		arning phase	Evaluation	Conclusion
SICK const	ruction					
		Orig	inal pair			
	S0a: A sea t	urtle is hunting for fish	S0b: 7	The turtle followed th	e fish	
		Norma	alized pair			
	S1a: A sea t	urtle is hunting for fish	S1b: 7	The turtle is following	the fish	
		Expa	nded pair			
		Simila	r meaning			
	S2a: A sea t	urtle is hunting for food	S2b: 7	The turtle is following	the red fish	
		Logically contradictory or at	least highly cor	ntrasting meaning		
	S3a: A sea t	urtle is not hunting for fish	S3b: 7	The turtle isn't follow	ing the fish	

Lexically similar but different meaning **S4a:** A fish is hunting for a turtle in the sea **S4b:** The fish is following the turtle

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ 三臣 - わんぐ

Introduction O	LangPro 00000000	NLI datasets ○●○○○	Learning phase	Ev a 00	aluation 0		nclusion
SICK constr	ruction						
			Original pair				
	S0a: A sea	turtle is hunting for fish	S0b: The turtle followed the fi	sh	_		
			Normalized pair		_		
	S1a: A sea	turtle is hunting for fish	S1b : The turtle is following the	e fish	_		
			Expanded pair				
			Similar meaning				
	S2a: A sea	turtle is hunting for food	······································	e red fish			
	60 4		or at least highly contrasting meaning				
	S3a: A sea	turtle is not hunting for f		the fish			
	SAD. A fich		milar but different meaning the sea S4b : The fish is following the i	huntla			
	54a: A lish						
	61	Normalized sen	· · · · · · · · · · · · · · · · · · ·	Score	Label		
	S1a: A sea turtle is	0	S2a: A sea turtle is hunting for food	4.5	E		
		not hunting for fish ing for a turtle in the sea	S1a : A sea turtle is hunting for fish S1a : A sea turtle is hunting for fish	3.4 3.9	C N		
		ollowing the red fish		4.6	E		
	S1b: The turtle is i		S1b : The turtle is following the fish S3b : The turtle isn't following the fish	4.0	C		
	S1b: The turtle is i	0	S4b: The fish is following the turtle	3.8	c		
	S1a: A sea turtle is		S2b: The turtle is following the red fish		N		
	S1a: A sea turtle is		S3b: The turtle is following the fish	3.2	N		
	S4b: The fish is fol	0	S1a: A sea turtle is hunting for fish	3.2	N		
	S1b: The turtle is i		S2a: A sea turtle is hunting for food	3.9	N		
	S1b: The turtle is i	0	S3a: A sea turtle is not hunting for fish		N		
		ing for a turtle in the sea	S1b : The turtle is following the fish	3.5	Ν		
	S1a: A sea turtle is		S1b : The turtle is following the fish	< ⊑3.8	< [™] N < ≥ > < 3	ŧ) ≣	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	L.Abzianio	Ize@uu.nl Natural L	anguage Reasoning with a Natural Th	eorem Pr	over		11 / 29

Introduction O	LangPro 00000000	NLI datasets ○○●○○	Learning phase	Evaluation	Conclusion
SICK exampl	es and stats				

SICK-1241 GOLD: neutral

A woman is dancing and singing with other women

A woman is dancing and singing in the rain

SICK-341 GOLD: contradiction There is no girl with a black bag on a crowded train

A girl with a black bag is on a crowded train

SICK-8381 GOLD: entailment

The young girl in blue is having fun on a slide

The young girl in blue is enjoying a slide

Relatedness	neutral	contradiction	entailment	Total	_
[1,2) range	10%	0%	0%	10% (923)	_
[2,3) range	13%	1%	0%	14% (1373)	
[3,4) range	28%	10%	1%	29% (3872)	
[4,5] range	7%	3%	27%	37% (3672)	
Total	56.86% (5595)	14.47% (1424)	28.67% (2821)	9840	

L.Abzianidze@uu.nl

Natural Language Reasoning with a Natural Theorem Prover

-

Introduction O	LangPro 00000000	NLI datasets ○○○●○	Learning phase	Evaluation	Conclusion
The FraCaS	dataset				

The FraCaS test suite [Cooper et al., 1996] was an early attempt to creating a semantic benchmark for NLP systems.

- Contains 346 problems, 45% of which are multi-premised.
- Covers GQs, plurals, anaphora, ellipsis, adjectives, comparatives, temporal reference, verbs and attitudes.
- Three-way annotated by the authors of the dataset.
- Contains some ambiguous sentences and a few erroneous problems.
- Requires almost no lexical or world knowledge

Introduction O	LangPro 00000000	NLI datasets ○○○●○	Learning phase	Evaluation	Conclusion
The FraCaS	dataset				

The FraCaS test suite [Cooper et al., 1996] was an early attempt to creating a semantic benchmark for NLP systems.

- Contains 346 problems, 45% of which are multi-premised.
- Covers GQs, plurals, anaphora, ellipsis, adjectives, comparatives, temporal reference, verbs and attitudes.
- Three-way annotated by the authors of the dataset.
- Contains some ambiguous sentences and a few erroneous problems.
- Requires almost no lexical or world knowledge

Later, the FraCaS question-answer pairs where converted into an NLI format [MacCartney and Manning, 2007]: online version

-

(a) < (a) < (b) < (b)

Introduct O	on	LangPro 00000000	NLI datasets 0000●	Learning phase	Evaluation 000	Conclusion
FraC	aS NLI	problems				
N A	ost Europea l Europeans	GOLD: entailm ans are resident i s are people o are resident in		eely within Europe		
_	ost Europea	ans can travel fre GOLD: undefin	eely within Europe			

Both female commissioners used to be in business.

Both commissioners used to be in business.

FraCaS-171 GOLD: entailment John wants to know how many men work part time. And women.

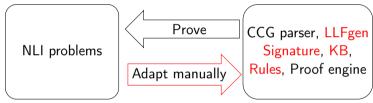
John wants to know how many women work part time.

FraCaS-87 GOLD: entailment

Every representative and client was at the meeting.

Every representative was at the meeting.

L.Abzianidze@uu.nl


Natural Language Reasoning with a Natural Theorem Prover

ъ

Introduction O	LangPro 00000000	NLI datasets	Learning phase ●००००००	Evaluation	Conclusion
Learning ph	ase				

The prover LangPro is (semi-automatically) trained on the NLI datasets [Abzianidze, 2016a].

• Adaptation:

Used datasets: SICK-trial and FraCaS

• Development:

Finding optimal values for certain parameters of the prover based on its performance on SICK-train.

NB: Only C&C parser is used in the learning phase in order to test LangPro for an unseen parser, EasyCCG, later.

L.Abzianidze@uu.nl

Introduction O	LangPro 0000000	NLI datasets 00000	Learning phase o●oooooo	Evaluation	Conclusion
Adaptation:	negative ca	ses			

We avoid fitting to the data and adopting unsound and non-general solutions.

The problems that were not solved during the adaptation:

- Sentence is not recognised as of category S or failed to be parsed
- The error is analysis is too specific to fix:

At most ten commissioners spend time at home (S/S)/NP N/N N/N N/N N (VP/PP)/NP N PP/NP N • Lexical relation is context dependent: SICK-4505 GOLD: entailment The doctors are healing a man The doctor is helping the patient SICK-384 GOLD: entailment A white and tan dog is running through the tall and green grass

A white and tan dog is running through a field

-

イロト イポト イヨト イヨト

Introduction O	LangPro 00000000	NLI datasets	Learning phase 00●0000	Evaluation	Conclusion
Adaptation:	positive cas	ses			

The problems that were solved by upgrading one of the components of the prover:

• Treat **few** as \downarrow in its 1st arg (*absolute* reading):

FraCaS-76GOLD: entailmentFew committee members are from southern EuropeFew female committee members are from southern Europe

• Introduce fit \sqsubseteq apply and food \sqsubseteq meal:

SICK-4734 GOLD: entailment A man is fitting a silencer to a pistol A man is applying a silencer to a gun

SICK-5110 GOLD: entailment A chef is preparing some food

A chef is preparing a meal

Introduction O	LangPro ೦೦೦೦೦೦೦	NLI datasets	Learning phase ○○○●○○○	Evaluation	Conclusion
Developm	ent phase				
Ontinual			awa asawala ada		

Optimal values of the following parameters are searched:

- The number of word senses to consider at the same time;
- The upper bound for the number of rule applications;
- Whether to use a term aligner:
 - Weak aligner aligns everything except terms of type np:

SICK-1022 GOLD: contradiction

A woman is wearing sunglasses of large size and is holding newspapers in both hands

There is no woman wearing sunglasses of large size and holding newspapers in both hands

SICK-727 GOLD: contradiction

The man in a grey t-shirt is sitting on a rock in front of the waterfall

There is no man in a grey t-shirt sitting on a rock in front of the waterfall

• Strong aligner aligns everything except terms of type np with larg.

SICK-423 GOLD: contradiction

Two men are not holding fishing poles

Two men are holding fishing poles

• Efficiency criterion of tableau rules.

Introduction O	LangPro 00000000	NLI datasets	Learning phase ○○○○●○○	Evaluation	Conclusion
Efficiency ci	riterion				

- Non-branching or branching (so called, α or β rules);
- Semantic equivalence vs proper entailment;
- Consuming (so called, γ rule) vs non-consuming;
- Producing (so called, δ rule) vs non-producing.

-

Introduction O	LangPro 00000000	NLI datasets	Learning phase ○○○○●○○	Evaluation	Conclusion
Efficiency c	riterion				

- Non-branching or branching (so called, α or β rules);
- Semantic equivalence vs proper entailment;
- Consuming (so called, γ rule) vs non-consuming;
- Producing (so called, δ rule) vs non-producing.

An example of an efficiency criterion:

EC = (nonBr, semEqui, nonConsum, nonProd)

-

イロト イボト イヨト イヨト

Introduction O	LangPro 00000000	NLI datasets	Learning phase 0000●00	Evaluation	Conclusion
Efficiency cri	terion				

- Non-branching or branching (so called, α or β rules);
- Semantic equivalence vs proper entailment;
- Consuming (so called, γ rule) vs non-consuming;
- Producing (so called, δ rule) vs non-producing.

An example of an efficiency criterion:

 $EC = \langle nonBr, semEqui, nonConsum, nonProd \rangle$

An efficiency vectors based on the EC efficiency criterion:

- $V_{EC}(\wedge_{\mathbb{T}}) = 1111$
- $V_{EC}(\vee_{\mathbb{T}}) = 0111$
- $V_{EC}(\exists_{\mathbb{T}}) = 1110$
- $V_{EC}(\exists_{\mathbb{F}}) = 0001$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うの()

Introduction O	LangPro 00000000	NLI datasets 00000	Learning phase 0000●00	Evaluation	Conclusion
Efficiency cri	terion				

- Non-branching or branching (so called, α or β rules);
- Semantic equivalence vs proper entailment;
- Consuming (so called, γ rule) vs non-consuming;
- Producing (so called, δ rule) vs non-producing.

An example of an efficiency criterion:

EC = (nonBr, semEqui, nonConsum, nonProd)

An efficiency vectors based on the EC efficiency criterion:

- $V_{EC}(\wedge_{\mathbb{T}}) = 1111$
- $V_{EC}(\vee_{\mathbb{T}}) = 0111$
- $V_{EC}(\exists_{\mathbb{T}}) = 1110$
- $V_{EC}(\exists_{\mathbb{F}}) = 0001$

What is the optimal efficiency criterion?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うの()

			Evaluation	Conclusion
0000000	00000	0000000	000	00000

Greedy search for optimal parameters

Acc%	Prec% Rec%		Sense	Sense Efficiency criterion		RAL	Parser
75.09	98.5	43.6	1	[nonP,nonB,equi,nonC]	No	200	C&C
76.42	98.3	46.8	1-5	-	-	-	-
76.89	97.8	48.1	All	-	-	-	-
78.44	97.9	51.7	-	[equi,nonB,nonP,nonC]	-	-	-
79.33	97.9	53.8	-	-	Weak	-	-
81.5	97.7	59.0	-	-	Strong	-	-
81.53	97.7	59.1	-	-	Strong	400	-
81.38	98.0	58.5	-	-	Strong	400	EasyCCG
82.6	97.7	61.6	-	-	Strong	400	Both

The results are given on the SICK-train problems.

3

イロト イポト イヨト イヨト

Introduction	LangPro	NLI datasets	Learning phase	Conclusion
			0000000	00000

Greedy search for optimal parameters

Acc%	Prec% Rec%		Sense	Sense Efficiency criterion		RAL	Parser
75.09	98.5	43.6	1	[nonP,nonB,equi,nonC]	No	200	C&C
76.42	98.3	46.8	1-5	-	-	-	-
76.89	97.8	48.1	All	-	-	-	-
78.44	97.9	51.7	-	[equi,nonB,nonP,nonC]	-	-	-
79.33	97.9	53.8	-	-	Weak	-	-
81.5	97.7	59.0	-	-	Strong	-	-
81.53	97.7	59.1	-	-	Strong	400	-
81.38	98.0	58.5	-	-	Strong	400	EasyCCG
82.6	97.7	61.6	-	-	Strong	400	Both

The results are given on the SICK-train problems.

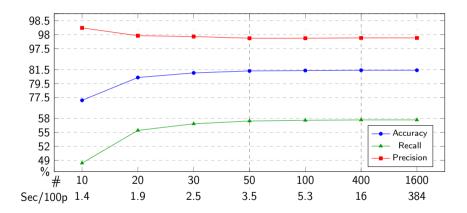
FraCaS-21 GO

GOLD: entailment

The residents of member states have the right to live in Europe

All residents of member states are individuals

Every individual who has the right to live in Europe can travel freely within Europe


The residents of member states can travel freely within Europe

3

(a) < (a) < (b) < (b)

Efficient and optimal rule application numbers

The results are given on the SICK-train problems.

э

(a) < (a) < (b) < (b)

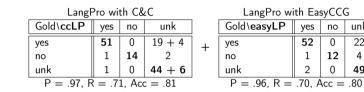
Introduction O	LangPro 00000000	NLI datasets 00000	Learning phase	Evaluation ●○○	Conclusion
Solving FraCa	aS [Abzianidz				

LangPro with C&C							
Gold\ccLP	yes	no	unk				
yes	51	0	19 + 4				
no	1	14	2				
unk	1	0	44 + 6				
P = .97, R = .71, Acc = .81							

LangPro with EasyCCG							
Gold\easyLP	yes	no	unk				
yes	52	0	22				
no	1	12	4				
unk	2	0	49				
P = .96, R = .70, Acc = .80							

L.Abzianidze@uu.nl Natural Language Reasoning with a Natural Theorem Prover

Introduction O	LangPro 00000000	NLI datasets 00000	Learning phase	Evaluation ●○○	Conclusion
Solving FraC	aS [Abzianid:				


LangPro with C&C Gold\ccLP yes no unk yes 51 0 19 + 4 no 1 14 2 unk 1 0 44 + 6		έC		LangPro with EasyCCG				
Gold\ccLP	yes	no	unk		Gold\easyLP	yes	no	ι
yes	51	0	19 + 4	+	yes	52	0	
no	1	14	2	'	no	1	12	
unk	1	0	44 + 6		unk	2	0	
P = .97, F	R = .7	1, Aco	c = .81	•	P = .96, R =	.70, A	lcc =	.8

LangPro with EasyCCG						
Gold\easyLP	yes	no	unk			
yes	52	0	22			
no	1	12	4			
unk	2	0	49			
P = .96, R =	P = .96, R = .70, Acc = .80					

=

	LangPro								
	Gold \ LP	yes	no	unk					
=	yes	60	0	14					
_	no	1	14	2					
	unk	2	0	49					
	P = .96, R = .81, Acc = .87								

Introduction O	LangPro 00000000	NLI datasets 00000	Learning phase	Evaluation ●○○	Conclusion
Solving FraCa	aS [Abzianidz				

_

(a) < (a) < (b) < (b)

unk

22

4

49

	LangPro								
	Gold \ LP	yes	no	unk					
_	yes	60	0	14					
_	no	1	14	2					
	unk	2	0	49					
	P = .96, F	R = .8	81, Ad	c = .87					

FraCaS-109 GOLD: contradiction LP: entailment

Just one accountant attended the meeting

Some accountants attended the meeting

L.Abzianidze@uu.nl

Natural Language Reasoning with a Natural Theorem Prover

Introduction O	LangPro 00000000	NLI datasets 00000	Learning phase	Evaluation ○●○	Conclusion
Related work	(FraCaS)				

[MacCartney and Manning, 2008] and [Angeli and Manning, 2014] employ a natural logic that is driven by sentence edits.

[Lewis and Steedman, 2013] employ Boxer-style [Bos et al., 2004] translation into FOL, Prover9 and distributional relation clustering.

[Mineshima et al., 2015, Haruta et al., 2020] also uses the Boxer-style translation but some HOGQs are treated as higher-order terms. Their inference system is implemented in the proof assistant Coq.

[Tian et al., 2014] and [Dong et al., 2014] uses abstract denotations obtained from DCS trees [Liang et al., 2011]: $man \subset \pi_{subj} (read \cap (W_{subj} \times book_{obj}))$

[Bernardy and Chatzikyriakidis, 2017] uses Grammatical Framework and Coq. [Hu et al., 2019] monotonicity calculus with trees obtain from CCG parsers. [Kim et al., 2021] monotonicity reasoning with Unscoped Episodic Logical Forms.

Introduction O	LangPro 00000000	NLI datasets	Learning phase	Evaluation ○○●	Conclusion
Compariso	on on FraCas				

Sec (Sing/All)		Single-premised (Acc %)					Overall (Acc %)												
		BL	NLO	7,08	LS	NL14	T14a,b	M15	K21	LP	BL	LS13	T14a,b	M15	H20	HM19	BC21 ^G	K21	LΡ
1 GQs	(44/74)	45	84	98	70	95	80 93	82	73	93	50	62	80 95	78	97	88	93	70	95
2 Plur	(24/33)	58	42	75	-	38	-	67	-	75	61	-	-	67	-	-	79	-	73
5 Adj	(15/22)	40	60	80	-	87	-	87	-	87	41	-	-	68	82	-	86	-	77
9 Att	(9/13)	67	56	89	-	22	-	78	-	100	62	-	-	77	92	-	85	-	92
1,2,5,9	(92/142)	50	-	88	-	-	-	78	-	88	52	-	-	74	-	-	88	-	87

BLmajoritybaseline,NL07[MacCartney and Manning, 2007],NL08[MacCartney and Manning, 2008],NL14[Angeli and Manning, 2014],LS13[Lewis and Steedman, 2013],M15[Mineshima et al., 2015],T14a[Tian et al., 2014],T14b[Dong et al., 2014],HM19[Hu et al., 2019],H20[Haruta et al., 2020],K21[Kim et al., 2021],and BC21[Bernardy and Chatzikyriakidis, 2021](with gold trees)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Introduction O	LangPro 00000000	NLI datasets	Learning phase	Evaluation	Conclusion ●০০০০
Conclusion					

- The theorem prover for natural logic;
- The theorem prover for natural language is a pipeline: CCG parser + LLFgen + natural logic prover + WordNet;
- Play with it: http://naturallogic.pro
- Clone or fork it: https://github.com/kovvalsky/LangPro

-

イロト イポト イヨト イヨト

Introduction O	LangPro 00000000	NLI datasets 00000	Learning phase	Evaluation 000	Conclusion ○●●●●			
Refere	nces I							
	Abzianidze, L. (2016a). A natura	l proof system for natural l	anguage. PhD thesis, Tilburg	University.				
	Abzianidze, L. (2016b). Natural solution to fracas entailment problems. In Proceedings of the Fifth Joint Conference on Lexical and Computational Semantics, pages 64–74, Berlin, Germany. Association for Computational Linguistics.							
	Angeli, G. and Manning, C. D. (2 2014 Conference on Empirical Me		-	e reasoning. In <i>Proceeding</i>	rs of the			
	Bernardy, JP. and Chatzikyriaki meets coq. In <i>IWCS 2017 - 12th</i>				amework			
	Remember J. R. and Chateilumiaki	lie S (2021) Analied term		of the EreCoS test suits	la.			

Bernardy, J.-P. and Chatzikyriakidis, S. (2021). Applied temporal analysis: A complete run of the FraCaS test suite. In *Proceedings of the 14th International Conference on Computational Semantics (IWCS)*, pages 11–20, Groningen, The Netherlands (online). Association for Computational Linguistics.

Bos, J., Clark, S., Steedman, M., Curran, J. R., and Hockenmaier, J. (2004). Wide-coverage semantic representations from a ccg parser. In *Proceedings of the 20th International Conference on Computational Linguistics (COLING '04)*, pages 1240–1246, Geneva, Switzerland.

Cooper, R., Crouch, D., Eijck, J. V., Fox, C., Genabith, J. V., Jaspars, J., Kamp, H., Milward, D., Pinkal, M., Poesio, M., Pulman, S., Briscoe, T., Maier, H., and Konrad, K. (1996). *FraCaS: A Framework for Computational Semantics*. Deliverable D16.

Introduction O	LangPro 00000000	NLI datasets 00000	Learning phase	Evaluation	Conclusion ○●●●●
References II					

Dong, Y., Tian, R., and Miyao, Y. (2014). Encoding generalized quantifiers in dependency-based compositional semantics. In *Proceedings of the 28th Pacific Asia Conference on Language, Information, and Computation*, pages 585–594, Phuket, Thailand. Department of Linguistics, Chulalongkorn University.

Haruta, I., Mineshima, K., and Bekki, D. (2020). Combining event semantics and degree semantics for natural language inference. In *Proceedings of the 28th International Conference on Computational Linguistics*, pages 1758–1764, Barcelona, Spain (Online). International Committee on Computational Linguistics.

Hu, H., Chen, Q., and Moss, L. (2019). Natural language inference with monotonicity. In *Proceedings of the 13th International Conference on Computational Semantics - Short Papers*, pages 8–15, Gothenburg, Sweden. Association for Computational Linguistics.

Kim, G., Juvekar, M., Ekmekciu, J., Duong, V., and Schubert, L. (2021). A (mostly) symbolic system for monotonic inference with unscoped episodic logical forms. In *Proceedings of the 1st and 2nd Workshops on Natural Logic Meets Machine Learning (NALOMA)*, pages 71–80, Groningen, the Netherlands (online). Association for Computational Linguistics.

Lai, A. and Hockenmaier, J. (2014). Illinois-Ih: A denotational and distributional approach to semantics. In *Proceedings of the* 8th International Workshop on Semantic Evaluation (SemEval 2014), pages 329–334, Dublin, Ireland. Association for Computational Linguistics and Dublin City University.

Lewis, M. and Steedman, M. (2013). Combined distributional and logical semantics. *Transactions of the Association for Computational Linguistics (TACL)*, 1:179–192.

イロト イボト イヨト イヨト 三日

Introduction O	LangPro 00000000	NLI datasets 00000	Learning phase	Evaluation	Conclusion ○●●●●
Refere	nces III				
	Liang, P., Jordan, M. I., and Klei Computational Linguistics (ACL)		endency-based compositional s	emantics. In Association fo	or
	MacCartney, B. and Manning, C. on Textual Entailment and Parag Linguistics.			-	
	MacCartney, B. and Manning, C. Scott, D. and Uszkoreit, H., edite			n in natural language infere	nce. In
	Marelli, M., Menini, S., Baroni, M compositional distributional sema Proceedings of SemEval 2014 (Ir.	ntic models on full sentenc	es through semantic relatednes	s and textual entailment. I	n
	Marelli, M., Menini, S., Baroni, M compositional distributional sema J., Moreno, A., Odijk, J., and Pij and Evaluation (LREC'14), Reyk	ntic models. In Calzolari, N peridis, S., editors, <i>Proceed</i>	., Choukri, K., Declerck, T., L ings of the Ninth International	, oftsson, H., Maegaard, B., Conference on Language I	Mariani,
	Miller, G. A. (1995). Wordnet: A	lexical database for english	. Communications of the ACN	<i>1</i> , 38(11):39–41.	
	Mineshima, K., Martínez-Gómez, semantics. In <i>Proceedings of the</i> Lisbon, Portugal. Association for	2015 Conference on Empiri			
				・ロ・ ・ 御・ ・ 神・ ・	E ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Introduction O	LangPro 00000000	NLI datasets	Learning phase	Evaluation	Conclusion ○●●●●
References	s IV				

Tian, R., Miyao, Y., and Matsuzaki, T. (2014). Logical inference on dependency-based compositional semantics. In *Proceedings* of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 79–89, Baltimore, Maryland. Association for Computational Linguistics.

3